

General information about the use of this catalogue

Liability statement

All product descriptions contained in this catalogue provide information based on the present state of our best scientific and practical knowledge, and are of a general nature thus no claims of compensation shall be charged against IEC INC from using the data in this catalog. The user is held responsible for checking the suitability, practicability and accuracy for their intended use.

Further information treatment

We reserve the right for further technical amendments or withdrawals without prior notice for any changes or updates to the current version based on newest industrial standards and technical innovations.

Designers, consultants, engineers, contractors or project owners are welcome to contact our Specialist Engineers for further explanations and clarifications when actual applications are ongoing.

Dimensions

All distance dimensions in this catalog are in MM (millimeter) only. Other units are denoted in metric system.

Drawings and illustrations

All drawings and illustrations cited in this catalogue are schematically for information and may differ from an actual application

Copyright statement

Copyright © 2024 IEC INC.

All rights reserved including but not limited to those of reproduction, translation or reduction to any electronic medium, in whole or part.

General information about structural bearings

A **structural bearing** is a mechanical device of a construction structure, which typically connects the substructure and substructure. It is used to provide structural restraints, specifically, transferring vertical and horizontal loads from the superstructure into the foundation whilst a certain amount of design translation and rotation (twisted) between structural elements is allowed as designed.

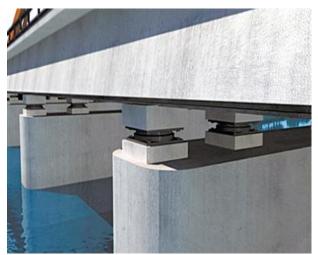
Bridge bearings connect bridge piers to the bridge deck. The appropriate selection of bridge bearings has been always a significant subject in construction engineering. There are many types of bearings which have been commonly used along with research and development of the industry. Before 1960s, the most commonly used bridge bearings were made of steel elements and nowadays a variety of different types of bearings has proven their value and largely applied, among which **Elastomeric Bearing**, **Pot Bearing**, and **Spherical Bearing** are the most worldwide acknowledged and employed in design and fabrication.

Types

Basically, all the structural bearings can be classif -ied to three types:

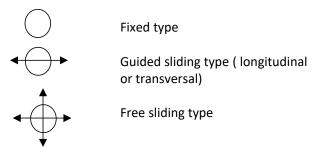
Fixed

No horizontal movement allowed while transfer the loads in all horizontal directions.


• Guided sliding

Only one direction movement in horizontal axis allowed while transfer horizontal loads in the perpendicular direction

• Free sliding


Horizontal movements in all directions allowed while transfer no horizontal forces

For the expansion bearings, usually the sliding friction is reduced to a minimum value by inserted sliding material (PTFE, Modified PTFE or UHWMPE) in contact with polished stainless steel plate (S304 or S316).

An illustration showing bridge bearings are in place under the bridge deck beam and above the pillars

Legends normally used in drawings:

Abbreviations used in this catalogue:

- F fixed
- G guided
- M free (multi-directional)

Corrosion prevention

All exposed steel surfaces are corrosion protection treated as per the requirements specified in the ISO12944. Standard corrosion protection procedures are listed below:

- ✓ Shotblast to Sa 2.5
- ✓ Hot aluminum spray to min. 30µm;
- ✓ Zinc-rich epoxy as primer coating;
- Polyurethane paint of intermediate and top coating;

Galvanized treatment can also be provided upon request. Other methods are also available upon request.

hot-aluminum spray

Measurement of thickness of the dry film of paint

Handling, Packaging and Storage

Structural bearings must be handled with care in all procedures until installation is completed.

Proper packaging such as using sturdy timber/plywood crates or pallets is necessary to protect bearings from damage during transit or storage. Any possible source to contaminate the bearings shall be avoided. Ideally bearings shall be packed according to the installation position but it is also understandable to mix the bearings when they are comparably small. In this operation,hard foam spacer is used to prevent collision.

structural bearing - pot bearing

pot bearings packed in wooden frame catered for sea-shipping

Bearing shall be always stored away from extreme humidity or possible contaminants.Elastomeric bearings shall also be kept away from escalating heat.

Assembled bearings at storage prior to shipment

Packaging at IEC workshop prior to delivery

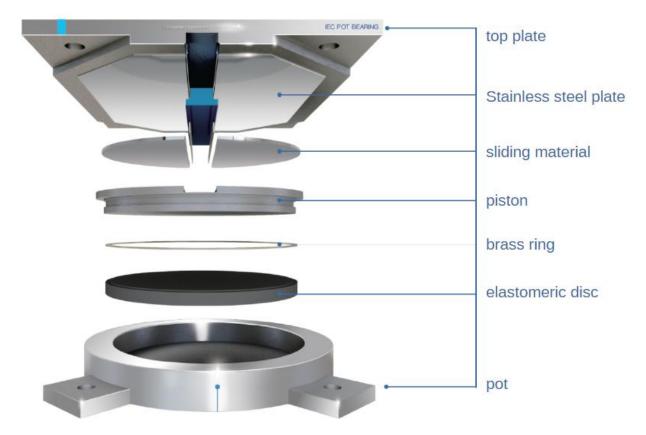
3 / 29

copyright ©IEC

Pot Bearing

History Background

Invented in West Germany in 1959, Pot Bearings have become an integral component of numerous structures worldwide. The first Pot Bearing was installed in 1962 for the B42 Highway in Germany, where it continues to function as intended today. Decades of use have demonstrated the durability and reliability of Pot Bearings. Their load-bearing capacity has evolved from the smallest unit handling 500 kN to the largest, which supports over 100 MN, with the most substantial Pot Bearing known to withstand 106.5 MN.


Pot Bearings were introduced to China in the 1970s, with their first application in a railway cable-stayed

structural bearing - pot bearing

bridge in 1979. Since then, Pot Bearings have been widely adopted across various civil projects, proving their effectiveness in connecting superstructures to substructures.

Design principle

A Pot Bearing consists of a steel pot, an elastomeric disc, and a piston plate (lid). The elastomeric disc, composed of rubber, behaves similarly to a liquid under compression while maintaining a constant volume, with a Poisson's ratio of 0.5. This design allows for uniform load distribution and accommodates rotational movement due to the elastomer's flexibility.

An exploded view of Pot Bearing (typical design of fixed type)

An essential component of the Pot Bearing is the brass sealing ring, which ensures that the elastomeric disc remains confined within the pot. Horizontal forces are transmitted from the piston to the pot. For guided-sliding bearings, an additional guide bar directs horizontal movement in a single axis. A sliding material, usually Polytetrafluoroethylene (PTFE) or Ultra High Molecular Weight Polyethylene (UHMWPE), is placed on the piston plate and slides against a polished stainless steel plate attached to the top plate.

PTFE offers high mechanical and chemical resistance, excellent surface smoothness, and low friction when paired with stainless steel. Customized bearings can be designed to handle specific conditions, such as high horizontal forces or lifting loads.

copyright ©IEC

Pot Bearings are designed to accommodate rotations of \pm 0.02 rad, with sliding components having a coefficient of friction below 0.03.

A typical design of IEC pot bearing outlook

Standards and Certificates

- European Standard: EN 1337-5;
- British Standard: BS 5400-9.1, BS 5400-9.2;
- American Standard: AASHTO LRFD Bridge Design Specification and Construction specification

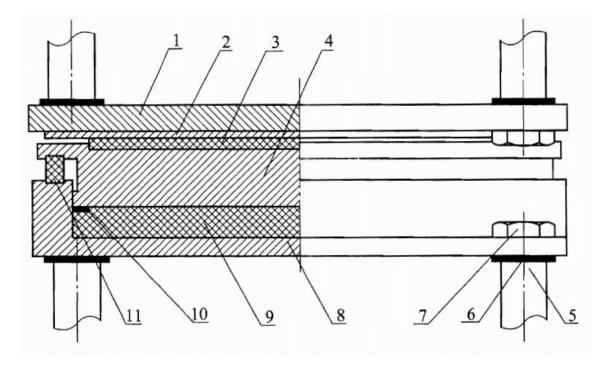
IEC has achieved CE certification for Pot Bearings according to EN standards, awarded by APPLUS Spain. IEC also designs and fabricates Pot Bearings to meet other standards and specifications upon request.

Advantages of using Pot Bearings

- Minimal vertical deflection: Pot Bearings offer significantly less vertical deflection than elastomeric bearings while supporting much higher loads.
- Equal load distribution: Multiple Pot Bearings installed along piers uniformly distribute loads, as the compression in each Pot Bearing is negligible.
- Low eccentricity: Resistance to deformation is minimal, resulting in eccentricity that is less than 3% of the disc diameter.
- Adaptable to varying materials: Larger attachment plates can be added to distribute loads over low-compressive materials.
- High horizontal load capacity: By adjusting the size of pot components, horizontal loads can be designed to match vertical loads.
- **Ease of fabrication:** The relatively simple design facilitates efficient manufacturing processes.

Types of Pot Bearings

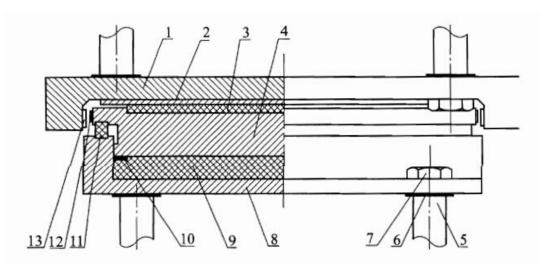
Pot Bearings are available in the following configurations:


- Free-sliding
- Guided-sliding
- Fixed

Each type can be adapted with top and bottom masonry plates, and various anchoring methods, including bolt/threaded socket assemblies or shear studs. These designs simplify future bearing replacement.

IEC CE certificate of Pot Bearings

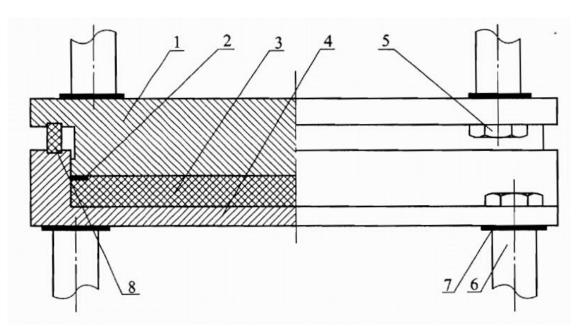
Free sliding


1-top plate; 2-stainless steel plate; 3-PTFE; 4-piston; 5-socket; 6-washer; 7-anchor bolt; 8-pot; 9-elastomer disc; 10-brass seal; 11-dustproof cover

3d view of a free sliding pot bearing (typical design)


copyright ©IEC

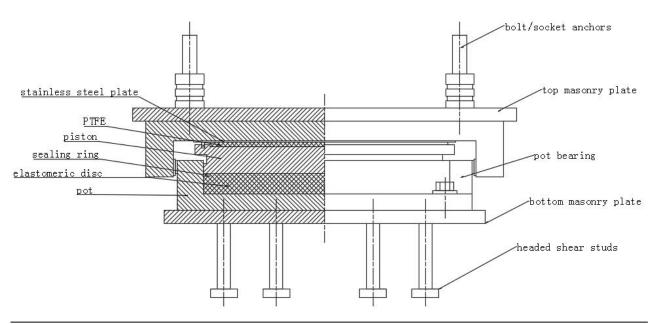
Guided sliding (lateral guided shown, center guided also available)


1-top plate; 2-stainless steel plate; 3-PTFE; 4-piston; 5-sleeve; 6-washer; 7-anchor bolt; 8-pot; 9elastomer disc; 10-brass seal; 11-dustproof cover; 12-SF-1 bronze backing sliding strip; 13-stainless steel plate (side)

3d view of a guided sliding pot bearing (typical design, center guiding)

1-top plate; 2-brass seal; 3-elastomer disc; 4-piston; 5-anchor bolt; 6-sleeve; 7-washer; 8-dustproof cover

3d view of a fixed pot bearing (typical design)


structural bearing - pot bearing

<u>Connection methods of Pot Bearings to</u> <u>superstructure/substructure</u>

Pot bearings can be customized with top and bottom masonry plates based on specific project requirements. The anchoring methods include bolt/threaded socket assemblies or shear studs. Incorporating masonry plates into the design simplifies future bearing replacements, ensuring a more efficient maintenance process.

Shear studs connection and bolt/socket assembly connection

Design sample showing different methods of anchoring & attachment plates

Materials

IEC uses high-quality approved materials for all Pot Bearing components. Details in below sections introduce the major parts IEC use in fabrication of pot bearings.

Elastomeric disc in the pot

- > Virgin rubber, no laminated or fiber reinforced.
- size tolerance

Elastomeric Disc Diameter (mm)	Diameter tolerance (mm)	Thickness tolerance (mm)
≤500	+0.5 0	+2.0 0
>500~1000	+1.0 0	+2.5 0
>1000~1500	+1.5 0	+3.0 0

> 1500	+2.0	+5.0
>1500	0	0

Properties

	ltem	Requirements			
	rubber type	NR	CR		
н	lardness (Shore A Durometer) IRHD	60±5	60±5		
	Tensile strength (MPa)	≥17.5	≥17.5		
	Elongation at break (%)	≥450	≥425		
Permanent d	eformation at constant compression (100°Cx22h) (%)	≤25	≤25		
Ozone resis	stance (25-50pphm, 20% strain at <i>37.7</i> °Cx100h)	No cracks	No cracks		
Hot air agin	Reduction of tensile strength (Mpa)	≤15	≤15		
g	Reduction of elongation at break (%)	≤40	≤40		
test (100°C x70h)	Hardness changeable range (Shore A Durometer)	≤15	≤10		

Polyfluortetraethylene (PTFE)

> properties

Requirements
55~70
29~40
≥300
2.14~2.20
327° ±100
<0.01
45
7~8

➢ PTFE size tolerance

PTFE Diameter D (mm)	Diameter (mm)	Thickness (mm)
<500	1.5	0.5
≤500	0	0
> 500 - 1200	2	0.75
>500~1200	0	0
> 1200	3	1
>1200	0	0

Note: Min. Thickness = 7mm and Max. Thickness = 8mm

Min. Thickness of convex part under steel plate = 4mm Min. Thickness of concave part over steel plate = 3mm.

Allowable pressure due to all loads at SLS is taken as 30 MPa unless

otherwise noted (such as UHMWPE). (EN1337-2 specifies 90/1.4 Mpa as the design pressure und er ULS loads)

Steel elements

- All steep parts except pot and top+bottom masonry plates are as per Q355, equal to ASTM A70 9 Gr.50, or S355.
- > Pot is made of cast steel, or ZG270, Q355, S355 (Gr.50) steel.
- Masonry plates are as per q235, S235 (Gr.36) unless otherwise noted.
- ▶ Bolts are as per Grade100-ASTM A709 (equals to 41Ce4-EN10083).
- Stainless steel is as per S304 unless otherwise noted. (argon arc welding in a consistent and continuous way to the back of top plate).
- Properties of cast steel (in case for pot)

Standard code	Tensile strength σb ≥ (MPa)	Yield strength σs ≥ (MPa)	Elongation ≥ (%)
ZG270-500- GB11352	500	270	18
Grade70-36-ASTM A27	485	250	22
270-480 -ISO 3755	480~630	270	18

Brass sealing rings

- > Shall be 2-4 layers and opening gap shall be smaller than 2mm.
- ➢ Grade as per ASTM B36, or CuZn37-EN12163.

SF-1 sliding strip (three-layered composite material with bronze backed)

	Material	Thickness (mm)
back layer	Bronze alloy	2.15 +/- 0.15
intermediate layer	Sintered interlocking porous bronze	0.25 +/- 0.15
surface layer	80% PTFE + 20% lead (in volume	0.10+/- 0.02
	%)	
Total thickness	Three-layered composite	2.5

Silicon grease (type 5201-2)

S/N	Property indicator	requirements
1	Appearance	White, half transparent
2	Penetration	190-230
3	volatility 24 h x 200°C	< 2%
4	Oil separation	< 10%
5	dielectric loss constant (1 M Hz)	3.5×10-3
6	dielectric constant (1 M Hz) F/m	2.5-3.2
7	volume resistivity Ω·cm	5×1014
8	dielectric strength MV/m	12

Quality control at IEC

IEC ensures rigorous quality control for all Pot Bearings, in compliance with the EN1337-5 standard. All bearings undergo Initial Type Tests (ITT), and Factory Production Control (FPC) is regularly monitored by TZUS Czech, an independent supervisory body.

Strict adherence to the Inspection and Testing Plan (ITP) guarantees internal quality control consistency. Performance tests, including vertical load tests up to 150% of the design value and horizontal load tests, are conducted on a project-specific basis.

The 3rd party quality control is also available upon client's request (by SGS or BV local office)

structural bearing - pot bearing

Proof load test of pot bearings as routine test prior to shipment

2 units of compression-shear testing equipment is housed at IEC's own laboratory. Max. vertical press reaches 30000 kN max., where the max. shear force reaches 20% of vertical compression load.

IEC Inspectors/engineers checking and putting records on the Process Card/ITP record

IEC's shear-compression tester with 30000kN vertical load

UT NDT testing on the POT of Pot Bearing

Production

2 separate workshops housing a total of 120 employees for producing steel bearing (including Pot Bearing) represent the massive fabrication capabilities of IEC. Each workshop has the rolling system of painting line.

A Glance at one IEC workshop assembly line

A great number of different types of fabrication machines, at different size levels, is equipped, among which many are the CNC type.

Workshop workers carefully checking the dimension of bearing parts during fabrication process

All pots that are used in Pot Bearings are either cast steel or machined from a single piece of metal. IEC has our own casting mill which guarantees the delivery speed as well as the quality of cast parts.

Assembly line of pot bearings at IEC

Each bearing is attached with its nameplate showing the bearing ID and other parameters. The movement indicator is arranged for all the expansion bearing. The indelible mark showing the traceability NO. is stenciled on the bearing plate itself. The temporary fixing device is painted red and has a reminder "remove after installation"

Stenciled traceability NO. on POT

Standard looks of a finished Pot Bearing

Each bearing is properly handled and packaged with sufficient protective methods according to different situations such as distance, way of transport, bearing size, etc.

Package prior to shipment for export Corrosion Prevention

For inaccessible surfaces

For unexposed steel surface, such as the inside face of the wall of the pot, no treatment is necessary.

For accessible surfaces

For exposed steel surfaces (most of the steel surfaces) of pot bearings, corrosion prevention methods must apply.

At IEC, where no specific corrosion-prevention method is requested, a hot aluminum spray followed by three coats of paint, achieving a minimum overall thickness of 240 μ m (with 30 μ m of hot metal spray) is applied.

Galvanized can be also offered upon request.

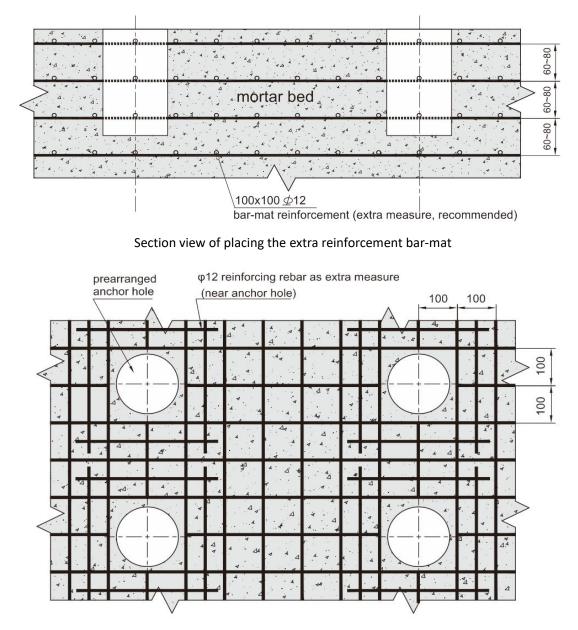
Installation guidelines of Pot Bearings

Basics

- Mortar bedding must not deviate by more than 2 mm in elevation.
- A minimum mortar bed thickness of 100 mm is required to accommodate jacking tools during future replacement.
- For bolt/socket assemblies, pre-arranged anchor holes must have a diameter tolerance of no more than 10 mm compared to the design specifications.
- Bar-mat reinforcement exceeding the plan dimensions of the bearings must be used, with concrete strength of at least C45 and mortar strength of no less than C40.

All the bolts used as anchors are Dacromet treated while the sockets are oxide or dacromet treated.

Dacromet treated bolts/sockets


Quotations

Pot Bearings are supplied on a project-related basis only. Customer have to furnish IEC staff with the necessary design parameters and related information for costing purpose. Such information shall include but not limited to:

- Max., min., and permanent vertical load and horizontal loads (at ULS and SLS);
- Displacements and rotations in both directions;
- Allowable contact pressure;
- Max. available space for the bearing.

There is no standard quotation for Pot Bearings. Consult IEC experts for the cost estimate of your project.

Plan view of layout of extra reinforcement bar-mat

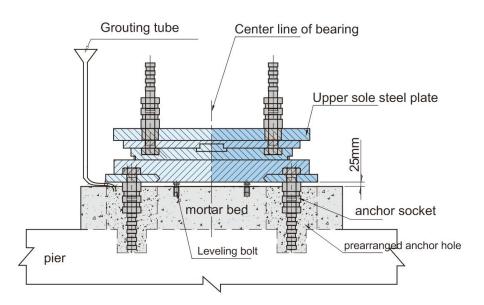
Pre-installation checks

- Inspect bearings upon arrival: Upon arrival at the site, verify the quantity, condition, and type of bearings against the stamped drawings to ensure accuracy and intactness.
- Verify anchor methods: Review the anchor methods as specified in the drawings and gather all necessary materials and resources, as outlined in the Installation Manual provided by IEC. Anchor bolt/socket assemblies are typically packaged separately for easier transportation, so ensure they are correctly identified and matched to their corresponding bearings.
- Record temperature and adjust preset movement: Measure and record the current temperature, then calculate the required preset movement for the expansion bearings. Adjust the movement by referencing the movement indicator attached to the bearing.
- Use high-strength, non-shrink mortar: The mortar used should be high-strength and nonshrink, with the following recommended properties:

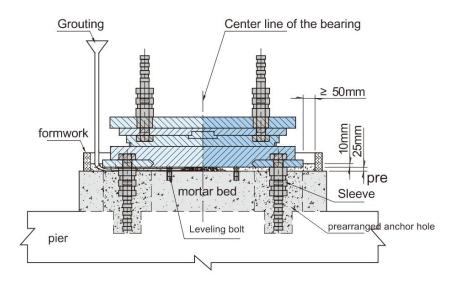
Performance requirement of grouting materials (hi-strength, shrink-free mortar)											
Items	required	d values	Items	required values							
	8h	≥20	Mobility	≥220mm							
	12h	≥25	Temperature range	+5∼+35°C							
Compressive strength (Mpa)	24h	≥40	Initial setting time	≥30min							
strengtn (Mpa)	28d	≥50	Final setting time	≤3 h							
	56d or 90d	Strength is not reduced	Shrinking percentage	< 2%							

Mortaring/Grouting notes

During grout placement, ensure the anchor holes are filled completely to prevent any air voids within the bond length. The grout must be progressively applied, filling the holes from bottom to top and maintaining full coverage until the grout sets. Soil anchor hole grouting should be completed within 48 hours of drilling. Grouting can be done using casing pipes, grout tubes, hollow-stem augers, or hollow drill rods.

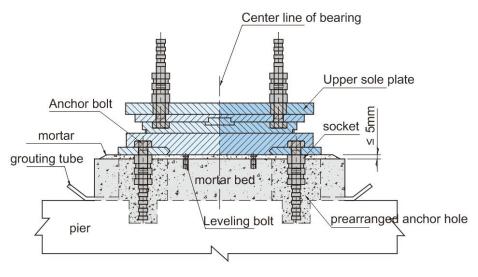

There are two primary methods for bearing installation:

- 1. Gravity grouting
- 2. Pressure grouting (jet grouting)


Gravity grouting procedures:

- Prepare the mortar bed: Bush-hammer the top surface of the mortar bed to achieve a sufficiently rough texture. Clear any debris or foreign material from the anchor holes and soak the top surface of the mortar bed. Ensure the mortar bed thickness is 25 mm less than the final level to accommodate the levelling screed.
- 2) **Position the bearing**: Carefully place the bearing onto the mortar bed. Use leveling bolts or wedges to adjust the height and ensure the bearing is level.
- 3) **Grout the anchor holes**: Using a grout tube, fill all anchor holes with grout from the bottom to the top, ensuring that all voids within the holes are completely filled.
- 4) Set up formwork and grout the screed: Immediately after step 3, install the formwork around the bearing within the mortar bed boundary. Grout the levelling screed beneath the bearing base plate to a thickness of 25 mm. Additionally, fill any voids between the formwork and the sides of the bearing with an extra 10 mm of grout. Ensure the grout is sufficiently vibrated to achieve a solid and dense filling.

Sketch of gravity grouting method, before the formwork is setup


Sketch of gravity grouting method, after the formwork is setup

Pressure grouting procedures

- 1) **Prearrange the grout tube**: Prepare a hole along the bottom side of the mortar bed for the grout tube to be inserted.
- 2) Verify mortar bed height: Recheck the height of the mortar bed, ensuring the top surface is smooth and level.
- 3) **Apply a thin mortar layer**: Trowel a thin layer of mortar on the top surface of the mortar bed to ensure proper adhesion.
- 4) **Position the bearing**: Place the bearing in its pre-measured position on the mortar bed.

- 5) **Grout the anchor holes**: Using the grout tube, incrementally apply pressure to fill the anchor holes. Continue grouting until refusal is achieved, making sure to control grouting pressure and pumping rates to prevent surface heaving or fracturing.
- 6) **Tighten the anchor bolts**: Secure the anchor bolts to the sockets, ensuring that the sockets are pre-smeared with grease to facilitate proper tightening and prevent corrosion.

Sketch of pressure grouting method

Installation procedures for cast-in-situ structures:

- 1) **Prepare the mortar bed**: Cast the mortar bed and prearrange the anchor holes according to the design specifications.
- 2) **Position the bearing**: Place the bearing onto the mortar bed and adjust it to the required position.
- 3) **Grout the anchor holes**: Infuse grout into the anchor holes, ensuring the grout fills the voids completely.
- 4) **Secure the bearing**: Once the grout has set, recheck the elevation of the bearing and tighten the bolt connections (if applicable) to secure it in place.
- 5) **Cast the deck beam**: Arrange the superstructure formwork around the bearing's upper steel plate, sealing it with adhesive tape or foam to prevent concrete leakage during the casting process.
- 6) **Remove the formwork**: After the concrete has achieved the required strength, remove the formwork to finalize the installation.

Installation procedures for precast structures:

- 1) **Prepare the mortar bed**: Cast the mortar bed and prearrange the anchor holes as per design specifications.
- 2) Attach the bearing: Connect the bearing to the bottom face of the beam during the casting process at the supplier's factory. Ensure that the top masonry plate and the corresponding

bolt/socket assemblies are properly inserted into the voids of the prefabricated structure (beam).

- 3) **Position the bearing and beam**: Place the bearing in position as the beam is installed. The beam must be supported by temporary props during this process. Carefully align the anchor holes during the lowering of the beam.
- 4) **Grout the anchor holes:** Infuse grout into the anchor holes and any gaps between the bearing plate and the beam surface, ensuring a complete fill.
- 5) **Tighten the anchor bolts**: Once the grout has set, tighten the anchor bolts to secure the bearing in place.
- 6) **Remove the temporary props**: After the grout has fully cured, remove the temporary props to complete the installation.

Last steps

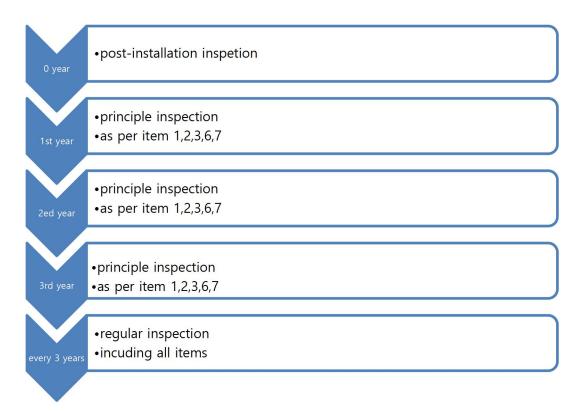
- 1) **Remove temporary fixing devices**: Only remove the temporary fixing devices after the bearing is fully installed and ready for operation. Seal any exposed holes left by the removal of fixing devices with self-vulcanizing silicone sealant.
- 2) Assemble the dustproof cover: If applicable and necessary, install the dustproof cover to protect the bearing.
- 3) **Repair damaged areas:** Inspect the bearing and surrounding components for any paint damage. Repair or touch up these areas as needed to ensure proper protection.
- Clean up the job site: Ensure the job site is thoroughly cleaned, removing any debris or materials to leave the area in good condition.

Temporary fixing devices (painted red)

assemble the dustproof cover by screw

Maintenance

Responsible maintenance of bridge bearings are critical to assure a long working life, especially in an adverse environment.

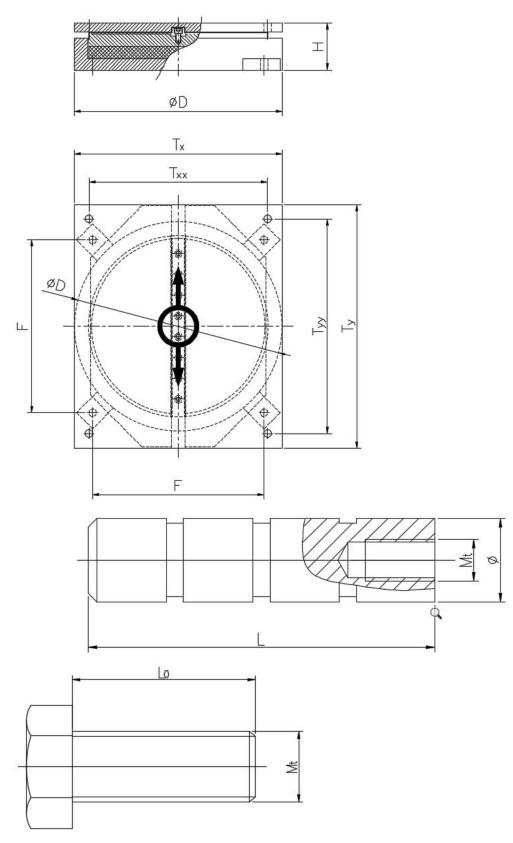

A typical routine check of the bridge bearing installed should include following items.								
s/n	item	description	remarks					
1	Corrosion	Paints or galvanized treatment situation; Touch-	Very critical to extend					
	prevention	up to repair when necessary.	bearing's worklife					
2	anchors	Exhaustive inspection of the bolt/socket	Very critical to keep					
		assemblies or other anchor methods. Re-tight or	the bearing					
		replace bolts when necessary.	operational					
3	cracks	Just in case any cracks detected in the steel						
		elements						
4	Sliding	Exposed PTFE shall be maintained at least 1mm	Or sometimes PTFE					
	material	thickness visible. Otherwise bearing needs to be	moves out of its					
		replaced. Also check if the sliding condition is	position.					
		verified or need clean-up and protection such as						
		adding extra seal.						
5	Mortar bed	Replace any bedding material showing signs of						
		distress or ineffectiveness. Reasoning and						
		investigation shall carry out.						
6	movement	Check if the actual movement falls in the design						
		range						
7	rotation	Check if excessive rotation takes place						
8	surroundings	Clean off any adverse obstacles that may						

jeopardize the bearing operation.

A typical routine check of the bridge bearing installed should include following items.

Suggested maintenance frequency

Note: bolt cleaning, greasing or tightening is suggested to be performed in every inspection.


Replacement

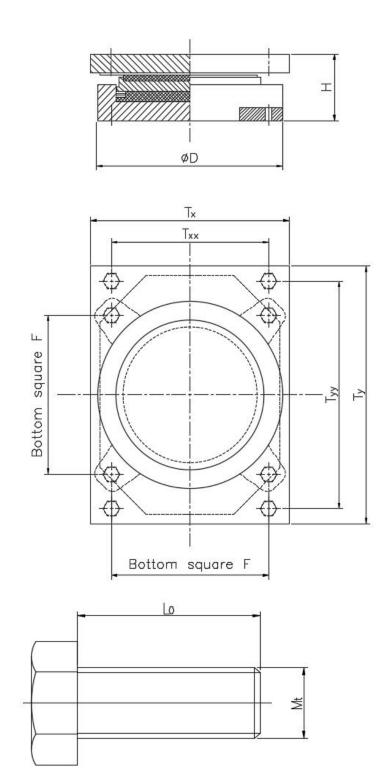
Pot bearings are designed either with top and bottom masonry plates or other methods so replacement can be realized. Contact IEC for replacement for each specific project.

Dimensions tables

Guided type JTPG series

Dimensions for Guided sliding type

	Load	s (kN)	Pot							Top plate							Anchor bolt	socket	
Bearing Model no.	vertical	horizont al	φD(mm)	F(mm)		H. mc	ovement(mm) Ty		Tx			Туу			Тхх	Mt x L0	φ×L	н
	SLS	ULS			±50	±100	±150	±200	±250		±50	±100	±150	±200	±250				
JTPG500/50-XX	500	50	200	170	310	410	510			200	270	370	470			160	M10x30	φ20x150	95
JTPG1000/100-XX	1000	100	270	230	370	470	570			270	330	430	530			230	M10x30	φ20x150	100
JTPG1500/150-XX	1500	150	325	275	415	515	615			325	365	465	565			275	M12x35	φ26x150	108
JTPG2000/200-XX	2000	200	370	310	460	560	660			370	400	500	600			310	M16x40	φ30x150	111
JTPG2500/250-XX	2500	250	420	350	495	595	695			420	435	535	635			360	M16x40	φ30x150	120
JTPG3000/300-XX	3000	300	455	375	525	625	725			455	455	555	655			385	M16x40	φ30x150	130
JTPG3500/350-XX	3500	350	490	400	545	645	745			490	465	565	665			410	M20x50	φ40x200	136
JTPG4000/400-XX	4000	400	525	425	580	680	780			525	490	590	690			435	M20x50	φ40x200	143
JTPG4500/450-XX	4500	450	555	450	600	700	800			555	510	610	710			465	M20x50	φ40x200	146
JTPG5000/500-XX	5000	500	585	480		730	830	930		585		630	730	830		485	M24x60	φ50x200	151
JTPG6000/600-XX	6000	600	640	520		765	865	965		640		665	765	865		540	M24x60	φ50x200	160
JTPG7000/700-XX	7000	700	690	560		805	905	1005		690		705	805	905		590	M24x70	φ50x200	167
JTPG8000/800-XX	8000	800	740	600		850	950	1050		740		730	830	930		620	M30x70	φ60x200	177
JTPG9000/900-XX	9000	900	780	630		885	985	1085		780		765	865	965		660	M30x80	φ60x200	191
JTPG10000/1000-XX	10000	1000	825	670		915	1015	1115		825		795	895	995		705	M30x80	φ60x200	196
JTPG11000/1100-XX	11000	1100	860	710			1045	1145	1245	860			905	1005	1105	720	M36x85	φ70x250	200

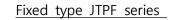

23 / 29

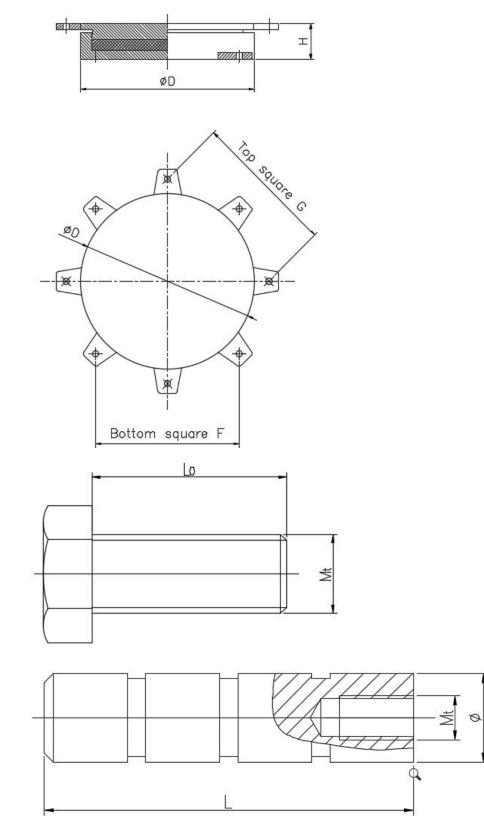
JTPG12000/1200-XX	12000	1200	905	740	1080	1180	1280	905	940	1040	1140	765	M36x85	φ70x250	205
JTPG13000/1300-XX	13000	1300	940	770	1110	1210	1310	940	970	1070	1170	800	M36x90	φ70x250	217
JTPG14000/1400-XX	14000	1400	975	800	1140	1240	1340	975	1000	1100	1200	835	M36x90	φ70x250	221
JTPG15000/1500-XX	15000	1500	1005	830	1170	1270	1370	1005	1030	1130	1230	865	M36x90	φ70x250	225
JTPG16000/1600-XX	16000	1600	1025	850	1200	1300	1400	1025	1030	1130	1230	855	M39x95	φ80x250	239
JTPG17000/1700-XX	17000	1700	1075	870	1230	1330	1430	1075	1060	1160	1260	905	M39x100	φ80x250	243
JTPG18000/1800-XX	18000	1800	1105	900	1260	1360	1460	1105	1090	1190	1290	935	M39x100	φ80x250	244
JTPG19000/1900-XX	19000	1900	1135	920	1280	1380	1480	1135	1100	1200	1300	955	M42x105	φ80x250	248
JTPG20000/2000-XX	20000	2000	1160	950	1305	1405	1505	1160	1125	1225	1325	980	M42x105	φ80x250	252
JTPG22500/2250-XX	22500	2250	1235	1000	1360	1460	1560	1235	1160	1260	1360	1035	M48x115	φ90x300	272
JTPG25000/2500-XX	25000	2500	1300	1050	1420	1520	1620	1300	1220	1320	1420	1100	M48x120	φ90x300	290
JTPG27500/2750-XX	27500	2750	1365	1100	1460	1560	1660	1365	1260	1360	1460	1165	M48x120	φ90x300	295
JTPG30000/3000-XX	30000	3000	1425	1150	1520	1620	1720	1425	1320	1420	1520	1225	M52x130	φ100x300	303

Multi-directional sliding type JTPM series

Dimensions for Multi-directional sliding type

	Main p	arameters	Ρ	Pot						Top pla	ite						Anchor b olt	socket	
Bearing Model No.	Vertical (KN)	Secondary moveme nt (mm) +/-	φD(mm)	F(mm)	Ty(mm)			Tx (mm)	Tyy (mm) Txx (mm)			Txx (mm)	Mt x L0	φxL	H(mm)				
	SLS	ULS			±50	±100	±150	±200	±250		±50	±100	±150	±200	±250				
JTPM500-XX/20	500	20	200	170	275	375	475	575	675	215	235	335	435	535	635	175	M8x30	ф 20x100	68
JTPM1000-XX/20	1000	20	270	230	335	435	535	635	735	275	295	395	495	595	695	235	M8x30	¢ 20x100	78
JTPM1500-XX/20	1500	20	325	275	380	480	580	680	780	325	330	430	530	630	730	275	M8x30	¢ 20x100	81
JTPM2000-XX/20	2000	20	370	310	420	520	620	720	820	370	370	470	570	670	770	320	M8x30	¢ 20x100	86
JTPM2500-XX/20	2500	20	420	350	455	555	655	755	855	420	405	505	605	705	805	370	M10x35	¢ 26x100	92
JTPM3000-XX/20	3000	20	455	375	485	585	685	785	885	455	435	535	635	735	835	405	M10x35	¢ 26x100	104
JTPM3500-XX/20	3500	20	490	400	510	610	710	810	910	490	460	560	660	760	860	440	M10x40	ф 26x150	112
JTPM4000-XX/20	4000	20	525	425	540	640	740	840	940	525	490	590	690	790	890	475	M10x40	¢ 26x150	121
JTPM4500-XX/20	4500	20	555	450	560	660	760	860	960	555	510	610	710	810	910	505	M10x40	¢ 26x150	124
JTPM5000-XX/20	5000	20	585	480		685	785	885	985	585		625	725	825	925	525	M12x45	ф26x150	132
JTPM6000-XX/20	6000	20	640	520		730	830	930	1030	640		670	770	870	970	580	M12x50	ф26x150	138
JTPM7000-XX/20	7000	20	690	560		770	870	970	1070	690		710	810	910	1010	630	M12x50	ф26x150	148
JTPM8000-XX/20	8000	20	740	600		805	905	1005	1105	740		745	845	945	1045	680	M12x60	ф26x150	155


26 / 29



JTPM9000-XX/20	9000	20	780	630	840	940	1040	1140	780	780	880	980	1080	720	M12x60	ф26x150	162
JTPM10000-XX/20	10000	20	825	670	875	975	1075	1175	825	815	915	1015	1115	765	M12x60	ф 26x200	174
JTPM11000-XX/20	11000	20	860	710		1005	1105	1205	860		925	1025	1125	780	M16x70	ф 30x200	181
JTPM12000-XX/20	12000	20	905	740		1035	1135	1235	905		955	1055	1155	825	M16x70	ф 30x200	186
JTPM13000-XX/20	13000	20	940	770		1065	1165	1265	940		985	1085	1185	860	M16x70	ф 30x200	197
JTPM14000-XX/20	14000	20	975	800		1090	1190	1290	975		1010	1110	1210	895	M16x70	ф 30x200	203
JTPM15000-XX/20	15000	20	1005	830		1115	1215	1315	1005		1035	1135	1235	925	M16x70	ф 30x200	210
JTPM16000-XX/20	16000	20	1025	850		1145	1245	1345	1045		1045	1145	1245	945	M20x80	ф 40x250	219
JTPM17000-XX/20	17000	20	1075	870		1175	1275	1375	1075		1075	1175	1275	975	M20x80	ф 40x250	226
JTPM18000-XX/20	18000	20	1105	900		1205	1305	1405	1105		1105	1205	1305	1005	M20x80	ф 40x250	227
JTPM19000-XX/20	19000	20	1135	920		1235	1335	1435	1135		1115	1215	1315	1015	M24x90	ф 50x250	233
JTPM20000-XX/20	20000	20	1160	950		1260	1360	1460	1160		1140	1240	1340	1040	M24x90	ф 50x250	239
JTPM22500-XX/20	22500	20	1235	1000		1335	1435	1535	1235		1185	1285	1385	1085	M30x100	ф 60x300	250
JTPM25000-XX/20	25000	20	1300	1050		1400	1500	1600	1300		1250	1350	1450	1150	M30x100	ф 60x300	271
JTPM27500-XX/20	27500	20	1365	1100		1465	1565	1665	1365		1315	1415	1515	1215	M30x110	ф 60x300	280
JTPM30000-XX/20	30000	20	1425	1150		1525	1625	1725	1425		1375	1475	1575	1275	M30x110	ф60x300	291

structural bearing-pot bearing

Dimensions for fixed type

	Main pa	arameters	Pc	ot	Тор	plate	Anchor b olt	socket		
Bearing Model N o.	Vert. I oad (KN) SLS	oad ad. (KN) (KN)		F(mm)	Фd (mm)	G (mm)	Mt x LO	φxL	H (mm)	
JTPF500/50	500	50	200	170	200	170	M10x30	φ20x150	58	
JTPF1000/100	1000	100	270	230	270	230	M10x30	φ20x150	66	
JTPF1500/150	1500	150	325	275	325	275	M12x35	φ26x150	73	
JTPF2000/200	2000	200	370	310	370	310	M16x40	φ30x150	82	
JTPF2500/250	2500	250	420	350	420	350	M16x40	φ30x150	89	
JTPF3000/300	3000	300	455	375	455	375	M16x40	φ30x150	95	
JTPF3500/350	3500	350	490	400	490	400	M20x50	φ40x200	103	
JTPF4000/400	4000	400	525	425	525	425	M20x50	φ40x200	113	
JTPF4500/450	4500	450	555	450	555	450	M20x50	φ40x200	115	
JTPF5000/500	5000	500	585	480	585	480	M24x60	φ50x200	123	
JTPF6000/600	6000	600	640	520	640	520	M24x60	φ50x200	135	
JTPF7000/700	7000	700	690	560	690	560	M24x70	φ50x200	142	
JTPF8000/800	8000	800	740	600	740	600	M30x70	φ60x200	150	
JTPF9000/900	9000	900	780	630	780	630	M30x80	φ60x200	157	
JTPF10000/1000	10000	1000	825	670	825	670	M30x80	φ60x200	168	
JTPF11000/1100	11000	1100	860	710	860	710	M36x85	φ70x250	181	
JTPF12000/1200	12000	1200	905	740	905	740	M36x85	φ70x250	186	
JTPF13000/1300	13000	1300	940	770	940	770	M36x90	φ70x250	192	
JTPF14000/1400	14000	1400	975	800	975	800	M36x90	φ70x250	200	
JTPF15000/1500	15000	1500	1005	830	1005	830	M36x90	φ70x250	205	
JTPF16000/1600	16000	1600	1025	850	1025	850	M39x95	φ80x250	211	
JTPF17000/1700	17000	1700	1075	870	1075	870	M39x100	φ80x250	216	
JTPF18000/1800	18000	1800	1105	900	1105	900	M39x100	φ80x250	217	
JTPF19000/1900	19000	1900	1135	920	1135	920	M42x105	φ80x250	220	
JTPF20000/2000	20000	2000	1160	950	1160	950	M42x105	φ80x250	228	
JTPF22500/2250	22500	2250	1235	1000	1235	1000	M48x115	φ90x300	247	
JTPF25000/2500	25000	2500	1300	1050	1300	1050	M48x120	φ90x300	255	
JTPF27500/2750	27500	2750	1365	1100	1365	1100	M48x120	φ90x300	268	
JTPF30000/3000	30000	3000	1425	1150	1425	1150	M52x130	φ100x30 0	278	